天津8月14日電(記者 孫玲玲)記者13日從南開大學獲悉,近日,南開大學計算機學院媒體計算實驗室取得最新研究成果,不僅從評估的角度揭示了現有AI檢測方法的性能不足,並創新性地提出了「直接差異學習」(Direct Discrepancy Learning,DDL)優化策略,教會AI用「火眼金睛」辨別人機不同,實現AI檢測性能的巨大突破。相關成果論文已被計算機多媒體領域國際頂級會議ACM MM2025(ACM International Conference on Multimedia)接收。 圖為南開大學研究團隊提出的DetectAnyLLM檢測框架以及MIRAGE基準數據集亮點全析。(南開大學 供圖) 近日,OpenAI發布新一代人工智慧模型GPT-5,再次引發全球關注。隨著DeepSeek、ChatGPT、通義千問、豆包等AIGC大模型逐漸從「新奇玩具」變成學習、工作中不可或缺的「生產力工具」,其伴生問題也日益凸顯:AI經常會「一本正經地胡說八道」,生成看似合理的虛假信息,造成「AI幻覺」;依賴AI工具代寫作業甚至畢業論文,極大衝擊著學術誠信和規範;論文AI率檢測系統有待完善,論文被誤判的問題時有發生……如何精準識別AI生成內容,成為亟待解決的熱點問題。 據了解,目前AI生成內容檢測主要有兩種路線,一種是「基於訓練的檢測方法」,使用特定數據訓練一個專用的分類模型;另一種是「零樣本檢測方法」,直接使用一個預訓練的語言模型並設計某種分類標準進行分類。 圖為AI生成內容檢測示意圖。(南開大學 供圖) 多項研究表明,現有檢測方法在應對複雜的現實場景時常顯不足。此前也曾有權威媒體報導,《荷塘月色》《流浪地球》等經典作品被某常用論文AI率檢測系統檢出高AI率。 為何現有的AI檢測工具會「誤判」?論文第一作者、南開大學計算機學院計算機科學卓越班2023級本科生付嘉晨解釋道:「如果把AI文本檢測比作一場考試,檢測器的訓練數據等同於日常練習題,現有檢測方法是機械刷題、死記硬背答題的固定套路,難以學會答題邏輯,一旦遇到全新難題,準確率就會顯著下降。」 「要想實現通用檢測,理論上需收集所有大模型的數據進行訓練,但在大模型迭代飛速的今天幾乎不可能。」付嘉晨說,讓檢測器真正學會舉一反三,即提升檢測器的泛化性能,是提升AI文本檢測性能的關鍵。 為此,研究團隊提出了DDL方法另闢蹊徑,通過直接優化模型預測的文本條件概率差異與人為設定的目標值之間的差距,幫助模型學習AI文本檢測的內在知識,可以精準捕捉人機文本間的深層語義差異,從而大幅提升檢測器的泛化能力與魯棒性。 「使用DDL訓練得到的檢測器如同有了『火眼金睛』,即便只『學習』過DeepSeek-R1的文本,也能精準識別像GPT-5這樣最新大模型生成的內容。」付嘉晨說。 團隊還提出了一個全面的測試基準數據集MIRAGE,使用13種主流的商用大模型(如豆包、DeepSeek、Kimi等)以及4種先進的開源大模型(如Qwen等),從AI生成、潤色、重寫三個角度構造了接近十萬條人類-AI文本對。 「MIRAGE是目前唯一聚焦於對商用大語言模型檢測的基準數據集。直觀地說,之前的基準數據集是由少而且能力簡單的大模型命題出卷,而MIRAGE是17個能力強大的大模型聯合命題,形成一套高難度、又有代表性的檢測試卷。」論文通訊作者、南開大學計算機學院副教授郭春樂說。 在MIRAGE的測試結果顯示,現有檢測器的準確率從在簡單數據集上的90%驟降至約60%;而使用DDL訓練的檢測器仍保持85%以上的準確率。與史丹福大學提出的DetectGPT相比,性能相對提升71.62%;與馬裡蘭大學、卡內基梅隆大學等共同提出的Binoculars方法相比,性能相對提升68.03%。 「AIGC發展日新月異,我們將持續迭代升級評估基準和技術,致力於實現更快、更準、更低成本的AI生成文本檢測,以AI之力,讓每一篇成果更出彩。」研究團隊負責人、南開大學計算機學院教授李重儀說。(完)
杭州8月13日電 題:人工智慧的全球對話是競爭還是共生? ——專訪國際計算機協會傑出科學家、西湖大學教授齊國君 作者 林波 曹丹 孫琳茹 當前,人工智慧(AI)正以「技術突破—產業融合—社會重構」的鏈式反應重塑人類文明。從基礎研究到場景落地,從實驗室創新到全球治理,AI已從單一技術工具演變為驅動經濟、社會、文化變革的核心引擎。2025年3月,國際計算機協會傑出科學家齊國君從美國返回中國工作,在西湖大學新組建「MAPLE實驗室」。 如何解讀中外人工智慧科研生態差異?人工智慧未來發展將如何跨越技術與倫理的邊界?人工智慧的全球對話是競爭還是共生?齊國君近日接受「東西問」獨家專訪,對此作出解讀。 現將訪談實錄摘要如下: 記者:您為什麼選擇回中國? 齊國君:主要是從個人職業發展、大環境兩點考量。 每個人不同的職業生涯周期和階段,對支持資源匹配以及能發揮的場景需求各有不同。結合自身經歷,我認為在AI領域,目前還有一些基礎問題需要解決,且隨著AI基礎模型發展迭代,更多重要成果和產權影響力將在商業場景方面產生。 結合在美國工業界和企業界的工作經歷,從個人發展以及產學結合角度考慮,我認為回中國發展更為合適。 另外,從全球角度看,中美兩國能為AI發展提供良好平臺,中國在市場規模、人口基數、生態環境等方面具有優勢,在應用場景、國家支持力度以及對於產生具有很大商業價值和潛力的產品方面有很多有利條件。 而美國頭部公司如微軟、Meta、Google等在生態中主導性強,馬太效應明顯,新企業或個人在其市場覆蓋下難以脫穎而出,競爭壓力大。 當地時間2022年11月9日,人們在位於美國加利福尼亞州門洛帕克的Meta總部拍照留念。 記者 劉關關 攝 記者:如何解讀中外人工智慧科研生態差異? 齊國君:美國商業化導向明顯。美國在科研上更多以商業化組織為主導,尤其在AI領域,大公司投入比美國聯邦政府層面更多。聯邦政府雖有計劃和研發機構牽頭項目指導,但整體以商業化組織為主。 AI領域經歷多輪周期,從2012年到2022年這一輪,美國商業化組織從資助技術研究開始,逐步尋找商業化途徑。從技術研究到探索規模化,再到商業化與應用研究,美國企業在技術研究上投入較多。 特別是高校科研投入方面,除美國國家科學基金會有投入外,美國軍方投入更多。早期美國的網際網路建設就得到軍方資助,很多高校經費源於此類政府機構。此外,高校與企業合作,多在人才和技術研究層面。 尤為不同的是,美國風投,特別是矽谷風投,對早期AI項目資助力度大。儘管其目前處於飽和投資狀態,即便知道投100個項目可能只有幾個成功,投資人也願意投入。 在中國,頭部IT企業如阿里、騰訊、字節等在AI領域投入大。同時,國家層面給予諸多支持,包括目標設定、基礎設施建設等,有總體規劃。 中國國內也有風投投入,但受晶片和基礎算力制約,投入成本高,為此更多關注應用類、能快速產生商業閉環的投資,創新企業多聚焦應用環節。此外,中國在風投退出機制上,如回購等有效方式方面,與美國存在差異,需進一步完善。 2025年7月26日,2025世界人工智慧大會在上海開幕。大會集中展示3000餘項前沿展品及100餘款「全球首發」「中國首秀」新品,規模創歷屆之最。 圖為青龍機器人在演示物流分揀。 記者 田雨昊 攝 記者:人工智慧未來發展將如何跨越技術與倫理的邊界? 齊國君:目前沒有任何充分證據或科學共識表明AI會覺醒並產生自我意識,這更多是基於科幻的猜測。不過,AI發展確實帶來新挑戰,但新技術發展通常都會面臨類似問題,如網際網路技術發展過程中的盜版、不良信息傳播等。 在我看來,AI技術發展對社會總體正面作用遠大於負面作用,在生產力發展、應用場景拓展、就業門類創造、產業結構優化等方面有很大價值,且已出現很多正面案例。 譬如,AI大量應用於客服行業,提高了勞動生產率,雖給就業帶來壓力,但也創造了如數據行業等薪酬更高的新職位;在數字人、動畫製作、美術製作等創意類行業領域,AI取代了90%以上的重複性勞動,廣告行業和數據處理相關行業也發生很大變化。 2024年3月29日,四川成都,第十一屆中國網絡視聽大會現場,虛擬數字人亮相展區。 記者 王磊 攝 展望未來,AI對所有行業的勞動生產率提高產生很大作用,類似網際網路發展第一階段先提高勞動生產率,未來可能過渡到以AI為生態的新企業出現階段。 我預計未來5年內會出現以AI為原生的大型企業,可能對未來二三十年的經濟產生重要影響。 記者:人工智慧的全球對話是競爭還是共生? 齊國君:我認為未來人工智慧的全球對話,既有競爭又有共生,但共生大於競爭。 AI領域速度競爭和開放競爭至關重要。 速度競爭上,AI行業與網際網路行業有共通之處,技術交流頻繁,難以長期獨佔技術。真正形成優勢的是規模效應,比拼的是速度和開放程度。誰能跑得更快,就能吸引更多用戶,獲得更多數據,使模型迭代得更快更好,形成正面反饋,即飛輪效應。飛輪一旦轉動,規模和影響力會不斷擴大。 如果模型僅在小範圍內使用,無法吸引更多用戶形成商業閉環,數據和用戶就無法增長,也就難以理解更多用戶意圖、使用場景,模型也就無法做得更好。所以AI發展要走向更開放,吸引更多用戶使用,以形成正面反饋。這也是AI的開放競爭。 但在我看來,成功的網際網路和IT企業必然是全球化或至少具有跨國影響力,中美網際網路和IT企業皆是如此。在此過程中,各方相互促進,形成共生關係。 例如在數據治理、AI倫理規範等方面展開合作,且AI產生巨大影響力時會作用於實體經濟和日常生活,其正面影響會溢出到全球範圍,技術也會共享。 學術交流促進共生。AI行業極為開放,大量新技術通過學術論文發表在學術期刊、會議以及公開的預印網頁上。大家藉助學術交流,推動知識傳播,分享新的技術思路。 像今年,DeepSeek宣布開源MLA解碼核FlashMLA、DeepEP代碼庫等。其新思路和算法很快在網上傳播,美國企業也借鑑使用。(完) 受訪者簡介: 齊國君。 受訪者供圖 齊國君,2005年畢業於中國科學技術大學自動化專業;2009年獲中國科學技術大學自動化系博士學位;2013年再獲美國伊利諾伊大學香檳分校電子與計算機工程專業哲學博士學位。他曾任IBM T.J. Watson研究中心研究員、華為美國研究中心首席AI科學家,並在39歲時獲得國際電子電氣工程師協會會士(IEEE Fellow)和國際計算機協會傑出科學家(ACM Distinguished Scientist)稱號。
免责声明:本文内容与数据仅供参考,不构成投资建议,使用前请核实。据此操作,风险自担。
94713
14
2025-11-02 06:03
45873
65
2025-11-02 06:03
61294
24
2025-11-02 06:03
13687
92
2025-11-02 06:03
58729
92
2025-11-02 06:03
79425
96
2025-11-02 06:03
26943
18
2025-11-02 06:03
74982
62
2025-11-02 06:03
23145
72
2025-11-02 06:03
47968
56
2025-11-02 06:03
59768
37
2025-11-02 06:03
78436
18
2025-11-02 06:03
26354
53
2025-11-02 06:03
54369
41
2025-11-02 06:03
26759
48
2025-11-02 06:03
75628
56
2025-11-02 06:03
49276
67
2025-11-02 06:03
19573
97
2025-11-02 06:03
48735
61
2025-11-02 06:03
48675
61
2025-11-02 06:03
19724
57
2025-11-02 06:03
76543
71
2025-11-02 06:03
14652
94
2025-11-02 06:03
43769
68
2025-11-02 06:03
32158
93
2025-11-02 06:03
43158
48
2025-11-02 06:03
97823
84
2025-11-02 06:03
81594
14
2025-11-02 06:03
45218
15
2025-11-02 06:03
25179
96
2025-11-02 06:03
54863
16
2025-11-02 06:03
53689
16
2025-11-02 06:03
46819
63
2025-11-02 06:03
95734
64
2025-11-02 06:03
52314
47
2025-11-02 06:03
24715
89
2025-11-02 06:03
34827
76
2025-11-02 06:03
14758
74
2025-11-02 06:03
47395
21
2025-11-02 06:03
37652
31
2025-11-02 06:03
64872
74
2025-11-02 06:03
61835
71
2025-11-02 06:03
89361
78
2025-11-02 06:03
64735
82
2025-11-02 06:03
75314
14
2025-11-02 06:03
34679
21
2025-11-02 06:03
59627
82
2025-11-02 06:03
85976
12
2025-11-02 06:03
86329
39
2025-11-02 06:03
38165
59
2025-11-02 06:03
32891
48
2025-11-02 06:03
54689
52
2025-11-02 06:03
| 香蕉直播 | 柠檬直播 |
| 9.1樱花ppt网站大片 | |
| 小狐狸直播 | 伊人下载 |
| 免费真人视频网站直播下载 | |
| 成人直播app推荐免费 | 嫦娥直播 |
| 杏仁直播 | |
| 少女6夜半直播nba | 打开b站看直播 |
| 就要直播 | |
| 看b站a8直播 | 名模直播 |
| 榴莲视频 | |
| 蜜疯直播 | 凤蝶直播 |
| 免费真人视频网站直播下载 | |
| 荔枝直播 | 黄播 |
| 桃花直播 | |
| 青稞直播 | 香蕉app免费下载 |
| 国外b站刺激战场直播app | |
| 秀色直播app下载安装app | 桃花app |
| 魅影直播间 | |
| 美女直播app | 迷笛直播 |
| 色花堂直播 | |